Altszn.com
  • Home
  • Crypto
    • Altcoins
    • Bitcoin
    • Ethereum
    • Monero
    • XRP
    • Zcash
  • Web3
  • DeFi
  • NFTs
No Result
View All Result
Altszn.com
  • Home
  • Crypto
    • Altcoins
    • Bitcoin
    • Ethereum
    • Monero
    • XRP
    • Zcash
  • Web3
  • DeFi
  • NFTs
No Result
View All Result
Altszn.com
No Result
View All Result

Meta AI Develops an Algorithm That Enables Robots to Learn Tasks from YouTube Videos

Altszn.com by Altszn.com
June 26, 2023
in Metaverse, Web3
0
Meta AI Develops an Algorithm That Enables Robots to Learn Tasks from YouTube Videos
399
SHARES
2.3k
VIEWS
Share on FacebookShare on Twitter




Meta AI unveiled a new algorithm that enables robots to learn and replicate human actions by watching YouTube videos. In a recent paper entitled “Affordances from Human Videos as a Versatile Representation for Robotics,” the authors explore how videos of human interactions can be leveraged to train robots to perform complex tasks.

Meta AI Develops an Algorithm That Enables Robots to Learn Tasks from YouTube Videos
Credit: Metaverse Post (mpost.io)

Published: 26 June 2023, 9:00 am Updated: 26 Jun 2023, 6:45 am

This research aims to bridge the gap between static datasets and real-world robot applications. While previous models have shown success on static datasets, applying these models directly to robots has remained a challenge. The researchers propose training a visual affordance model using internet videos of human behavior could be a solution. This model estimates where and how a human is likely to interact in a scene, providing valuable information for robots.

The concept of “affordances” is central to this approach. Affordances refer to the potential actions or interactions an object or environment offers. By understanding affordances through human videos, the robot gains a versatile representation that enables it to perform various complex tasks. The researchers integrate their affordance model with four different robot learning paradigms: offline imitation learning, exploration, goal-conditioned learning, and action parameterization for reinforcement learning.

To extract affordances, the researchers utilize large-scale human video datasets like Ego4D and Epic Kitchens. They employ off-the-shelf hand-object interaction detectors to identify the contact region and track the wrist’s trajectory after contact. However, an important challenge arises when the human is still present in the scene, causing a distribution shift. To address this, the researchers use available camera information to project the contact points and post-contact trajectory to a human-agnostic frame, which serves as input to their model.

Previously, robots were capable of mimicking actions, but their abilities were limited to replicating specific environments. With the latest algorithm, researchers have made significant progress in “generalizing” robot actions. Robots can now apply their acquired knowledge in new and unfamiliar environments. This achievement aligns with the vision of achieving Artificial General Intelligence (AGI) as advocated by AI researcher Jan LeCun.

The model takes the human-agnostic frame as input and produces two key outputs
The model takes the human-agnostic frame as input and produces two key outputs: a contact heatmap and wrist waypoints. The contact heatmap indicates the likely points of contact, while the wrist waypoints predict the trajectory after contact. These outputs can be directly used during inference time, leveraging sparse 3D information such as depth and robot kinematics. / Credit: robo-affordances.github.io

Meta AI is committed to advancing the field of computer vision and is planning to share its project’s code and dataset. This will enable other researchers and developers to further explore and build upon this technology. With increased access to the code and dataset, the development of self-learning robots capable of acquiring new skills from YouTube videos will continue to progress.

The model takes the human-agnostic frame as input and produces two key outputs
To evaluate the efficacy of their approach, the researchers conducted experiments across four real-world environments involving ten different tasks and two robotic platforms operating in the wild. The results demonstrated the seamless integration of computer vision techniques with robotic manipulation, showcasing the potential of their Vision-Robotics Bridge (VRB) concept. / Credit: robo-affordances.github.io

By leveraging the vast amount of online instructional videos, robots can become more versatile and adaptable in various environments.

Read more about AI:





Read More: mpost.io

Tags: AlgorithmdevelopsenablesLearnMetaMetaverseRobotsTasksVideosYouTube
ADVERTISEMENT

Recent

Sui vote on $162M Cetus funds ignites decentralization debate in DeFi

Sui vote on $162M Cetus funds ignites decentralization debate in DeFi

May 30, 2025
Xend Finance, Risevest Launch Tokenization Platform in Africa

Xend Finance, Risevest Launch Tokenization Platform in Africa

May 30, 2025
Bitcoin Slips Below $104K, Cryptos Slide as U.S.-China Tariff Tensions Flare Up

Bitcoin Slips Below $104K, Cryptos Slide as U.S.-China Tariff Tensions Flare Up

May 30, 2025

Categories

  • Bitcoin (4,559)
  • Blockchain (10,856)
  • Crypto (8,802)
  • Dark Web (454)
  • DeFi (8,138)
  • Ethereum (4,590)
  • Metaverse (6,882)
  • Monero (253)
  • NFT (1,134)
  • Solana (4,930)
  • Web3 (19,943)
  • Zcash (470)

Category

Select Category

    Advertise

    Advertise your site, company or product to millions of web3, NFT and cryptocurrency enthusiasts. Learn more

    Useful Links

    Advertise
    DMCA
    Contact Us
    Privacy Policy
    Shipping & Returns
    Terms of Use

    Resources

    Exchanges
    Changelly
    Web3 Jobs

    Recent News

    Sui vote on $162M Cetus funds ignites decentralization debate in DeFi

    Sui vote on $162M Cetus funds ignites decentralization debate in DeFi

    May 30, 2025
    Xend Finance, Risevest Launch Tokenization Platform in Africa

    Xend Finance, Risevest Launch Tokenization Platform in Africa

    May 30, 2025

    © 2022 Altszn.com. All Rights Reserved.

    No Result
    View All Result
    • Home
      • Home – Layout 1
      • Home – Layout 2
      • Home – Layout 3

    © Altszn.com. All Rights Reserved.

    • bitcoinBitcoin (BTC) $ 104,203.00
    • ethereumEthereum (ETH) $ 2,534.80
    • tetherTether (USDT) $ 1.00
    • xrpXRP (XRP) $ 2.15
    • bnbBNB (BNB) $ 660.71
    • solanaSolana (SOL) $ 157.93
    • usd-coinUSDC (USDC) $ 0.999801
    • dogecoinDogecoin (DOGE) $ 0.195289
    • tronTRON (TRX) $ 0.268643
    • cardanoCardano (ADA) $ 0.693834
    • staked-etherLido Staked Ether (STETH) $ 2,532.35
    • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 104,053.00
    • wrapped-stethWrapped stETH (WSTETH) $ 3,061.01
    • hyperliquidHyperliquid (HYPE) $ 32.34
    • suiSui (SUI) $ 3.23
    • chainlinkChainlink (LINK) $ 13.96
    • avalanche-2Avalanche (AVAX) $ 20.73
    • stellarStellar (XLM) $ 0.267198
    • leo-tokenLEO Token (LEO) $ 8.74
    • bitcoin-cashBitcoin Cash (BCH) $ 402.94
    • the-open-networkToncoin (TON) $ 3.19
    • shiba-inuShiba Inu (SHIB) $ 0.000013
    • hedera-hashgraphHedera (HBAR) $ 0.167814
    • usdsUSDS (USDS) $ 0.999914
    • wethWETH (WETH) $ 2,533.53
    • litecoinLitecoin (LTC) $ 86.14
    • wrapped-eethWrapped eETH (WEETH) $ 2,706.12
    • polkadotPolkadot (DOT) $ 4.06
    • moneroMonero (XMR) $ 328.86
    • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.01
    • bitget-tokenBitget Token (BGB) $ 4.80
    • ethena-usdeEthena USDe (USDE) $ 0.999771
    • pepePepe (PEPE) $ 0.000012
    • pi-networkPi Network (PI) $ 0.665226
    • whitebitWhiteBIT Coin (WBT) $ 31.30
    • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 104,192.00
    • daiDai (DAI) $ 0.999825
    • aaveAave (AAVE) $ 251.45
    • uniswapUniswap (UNI) $ 6.22
    • bittensorBittensor (TAO) $ 380.94
    • okbOKB (OKB) $ 50.64
    • aptosAptos (APT) $ 4.80
    • crypto-com-chainCronos (CRO) $ 0.100381
    • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.17
    • nearNEAR Protocol (NEAR) $ 2.45
    • blackrock-usd-institutional-digital-liquidity-fundBlackRock USD Institutional Digital Liquidity Fund (BUIDL) $ 1.00
    • jito-staked-solJito Staked SOL (JITOSOL) $ 189.62
    • tokenize-xchangeTokenize Xchange (TKX) $ 34.01
    • ondo-financeOndo (ONDO) $ 0.822610
    • ethereum-classicEthereum Classic (ETC) $ 17.13
    • bitcoinBitcoin (BTC) $ 104,203.00
    • ethereumEthereum (ETH) $ 2,534.80
    • tetherTether (USDT) $ 1.00
    • xrpXRP (XRP) $ 2.15
    • bnbBNB (BNB) $ 660.71
    • solanaSolana (SOL) $ 157.93
    • usd-coinUSDC (USDC) $ 0.999801
    • dogecoinDogecoin (DOGE) $ 0.195289
    • tronTRON (TRX) $ 0.268643
    • cardanoCardano (ADA) $ 0.693834
    • staked-etherLido Staked Ether (STETH) $ 2,532.35
    • wrapped-bitcoinWrapped Bitcoin (WBTC) $ 104,053.00
    • wrapped-stethWrapped stETH (WSTETH) $ 3,061.01
    • hyperliquidHyperliquid (HYPE) $ 32.34
    • suiSui (SUI) $ 3.23
    • chainlinkChainlink (LINK) $ 13.96
    • avalanche-2Avalanche (AVAX) $ 20.73
    • stellarStellar (XLM) $ 0.267198
    • leo-tokenLEO Token (LEO) $ 8.74
    • bitcoin-cashBitcoin Cash (BCH) $ 402.94
    • the-open-networkToncoin (TON) $ 3.19
    • shiba-inuShiba Inu (SHIB) $ 0.000013
    • hedera-hashgraphHedera (HBAR) $ 0.167814
    • usdsUSDS (USDS) $ 0.999914
    • wethWETH (WETH) $ 2,533.53
    • litecoinLitecoin (LTC) $ 86.14
    • wrapped-eethWrapped eETH (WEETH) $ 2,706.12
    • polkadotPolkadot (DOT) $ 4.06
    • moneroMonero (XMR) $ 328.86
    • binance-bridged-usdt-bnb-smart-chainBinance Bridged USDT (BNB Smart Chain) (BSC-USD) $ 1.01
    • bitget-tokenBitget Token (BGB) $ 4.80
    • ethena-usdeEthena USDe (USDE) $ 0.999771
    • pepePepe (PEPE) $ 0.000012
    • pi-networkPi Network (PI) $ 0.665226
    • whitebitWhiteBIT Coin (WBT) $ 31.30
    • coinbase-wrapped-btcCoinbase Wrapped BTC (CBBTC) $ 104,192.00
    • daiDai (DAI) $ 0.999825
    • aaveAave (AAVE) $ 251.45
    • uniswapUniswap (UNI) $ 6.22
    • bittensorBittensor (TAO) $ 380.94
    • okbOKB (OKB) $ 50.64
    • aptosAptos (APT) $ 4.80
    • crypto-com-chainCronos (CRO) $ 0.100381
    • ethena-staked-usdeEthena Staked USDe (SUSDE) $ 1.17
    • nearNEAR Protocol (NEAR) $ 2.45
    • blackrock-usd-institutional-digital-liquidity-fundBlackRock USD Institutional Digital Liquidity Fund (BUIDL) $ 1.00
    • jito-staked-solJito Staked SOL (JITOSOL) $ 189.62
    • tokenize-xchangeTokenize Xchange (TKX) $ 34.01
    • ondo-financeOndo (ONDO) $ 0.822610
    • ethereum-classicEthereum Classic (ETC) $ 17.13